
Lecture 1

Fundamental Concepts of Transport Theory

1 Phase Space

To describe the transport of radiation, we must be able to specify both the position and velocity

of particles. A point in phase space corresponds to both a position and a velocity. We will use
−→
P

to denote a vector of phase-space coordinates. Assuming the use of Cartesian spatial coordinates,

the standard set of phase-space coordinates for particle transport is

−→
P ≡ (x, y, z,

−→
Ω , E) , (1)

where x, y, and z are the usual Cartesian coordinates of the particle position,
−→
Ω is a unit Cartesian

vector representing the direction of particle ¤ow, and E is the particle energy. The direction

coordinates are illustrated in Fig. 1. Note from Fig. 1 that
−→
Ω can be represented in terms of a

polar angle, θ, and an azimuthal angle, Φ. It can also be represented in terms of any two of its

Cartesian components, which are given by

Ωx = sin θ cos Φ , (2a)

Ωy = sin θ sin Φ , (2b)

Ωz = cos θ . (2c)
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Figure 1:
−→
r is the particle position vector,

−→
Ω is the particle direction vector, and E is the particle

energy

The differential phase-space volume associated with phase-space point
−→
P is

dP ≡ dV dΩdE , (3a)

where

dV = dx dy dz , (3b)

and

dΩ = sin θ dθ dφ . (3c)

Note that each point on the unit sphere represents a direction, thus dΩ, represents a differential
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area on the unit sphere. Since the integral over all directions is equal to 4π, i.e.,

∫ 2π

0

∫ π

0

sin θ dθ dΦ = 4π , (4)

we say that the unit sphere has a total “area” of 4π steradians.

A solid angle, which is illustrated in Fig. 2, is a set of points on the unit sphere centered about

some direction,
−→
Ω 0, with an associated area in steradians, ∆Ω. Every direction within the solid

angle,
−→
Ω , satis£es

−→
Ω · −→Ω 0 ≤ 1 − ∆Ω/2π . (5)

Note that
−→
Ω · −→Ω 0 represents the cosine of the angle subtended by

−→
Ω and

−→
Ω 0. A solid angle of

4π contains all directions, A solid angle of π contains half of all the directions, and a solid angle

of zero contains only
−→
Ω 0.

2 Fundamental Transport Functions

In this section, we de£ne certain fundamental functions associated with transport theory that re-

late to particle distribution functions. We make a ¤uid-like approximation in transport theory in

that we assume continuum particle distributions even though real particle distributions are dis-

crete in nature. Nonetheless, this assumption is useful because it enables us to use the language of

partial integro-differential equations to formulate an equation for particle transport distributions.

Furthermore, the continuum distributions that are obtained accurately predict reality if the time
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Ω 0

Figure 2: Illustration of solid angle centered about the direction vector,
−→
Ω 0.

and scales associated with these solutions are large with respect to the time scales associated with

particle interactions, and the length scales associated with these solutions are large with respect

to particle sizes and interaction lengths. Furthermore, the number of particles in any region in

time and space over which a measurement is made must be statistically meaningful to observe

agreement with theory.

In the de£nitions that follow, we often use the word “about” as in “energy about E.” A

quantity that is “about” a particular value lies in the differential vicinity of that value. Therefore
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“a particle with an energy about E” implies a particle that has an energy between E and E+ dE.

Name: Phase-space Particle Density.

Units: (particles/(cm3 − steradian−MeV )).

Symbol: N (
−→
P ).

Interpretation: The quantity,

N (
−→
P ) dP ,

represents the number of particles in the differential phase-space volume dP .

Name: Angular Flux.

Symbol: ψ(
−→
P ).

Units: (particles/(cm2 − sec− steradian−MeV )).

Equivalence: ψ(
−→
P ) ≡ N (

−→
P )v, where v is the particle speed.

Interpretation 1: Consider a differential surface area, dA, located at position,
−→
r , and oriented

such that it is normal to the direction vector,
−→
Ω . Then the expression

ψ(
−→
P ) dAdΩ dE ,

represents the number of particles with directions about
−→
Ω and energies about E, passing per

second through dA. The normal orientation of dA is very important.

Interpretation 2: Consider a differential surface area, dA, located at position,
−→
r , that is ar-

bitrarily oriented. Every differential surface has two unit normal vectors that are directed in
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opposition to each other, as shown in Fig. 3. If the differential surface is part of a closed surface,

one of those vectors can be uniquely identi£ed as outward-directed. Let us denote it by
−→
n . If

−→
Ω · −→n > 0, then the expression,

ψ(
−→
P )

−→
Ω · −→n dAdΩ dE ,

represents the number of particles with directions about
−→
Ω and energies about E, passing per

second through dA. Note that these particles are exiting the volume associated with the closed

surface. If
−→
Ω · −→n < 0, then the expression,

ψ(
−→
P )

−→
Ω · −→n dAdΩ dE ,

is a negative quantity, but its absolute value represents the number of particles with directions

about
−→
Ω and energies about E, passing per second through dA. Note that these particles are

entering the volume associated with the closed surface.

Interpretation 3: The expression,

ψ(
−→
P ) dP ,

represents the total pathlength traveled per second by particles within the differential phase-space

volume, dP .

Name: Scalar Flux.

Symbol: φ(
−→
r , E).
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Figure 3: Side-on view of surface with left and right unit normal vectors.

Units: (particles/(cm2 − sec−MeV )).

De£nition: φ(
−→
r , E) ≡ ∫

4π
ψ(

−→
P ) dΩ.

Interpretation: The expression,

φ(
−→
r , E) dV dE ,

represents the total pathlength traveled per second by particles with energies about E within the

differential phase-space volume, dP .

Name: Net Current Vector.

Symbol:
−→
J (

−→
r , E).
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Units: (particles/(cm2 − sec−MeV )).

De£nition:
−→
J (

−→
r , E) ≡ ∫

4π
ψ(

−→
P )

−→
Ω dΩ .

Interpretation: Consider a differential surface area, dA, located at position
−→
r , that is part of a

closed surface and has an outward-directed normal,
−→
n . Further let ∆Ω− and ∆Ω+ denote those

directions satisfying
−→
Ω · −→n < 0 and

−→
Ω · −→n > 0, respectively. Then the expression,

−→
J (

−→
r , E) · −→n dAdE ,

represents the net number of particles with energies about E, exiting the enclosed volume per

second through dA. By this we mean the number of particles with energies about E, exiting the

enclosed volume per second through dA minus the number of particles with energies about E,

entering the enclosed volume per second through dA. To see why this is so, consider that

−→
J (

−→
r , E) · −→n dAdE =

∫
4π

ψ(
−→
P )

−→
Ω · −→n dΩ dAdE ,

=

{∫
∆Ω−

ψ(
−→
P )

−→
Ω · −→n dΩ +

∫
∆Ω+

ψ(
−→
P )

−→
Ω · −→n dΩ

}
dAdE .

The £rst partial integral is a negative quantity, but its absolute value represents the number of

particles with energies aboutE, entering the enclosed volume per second through dA. The second

partial integral represents the number of particles with energies about E, exiting the enclosed

volume per second through dA.

8



3 Fundamental Properties of Transport Media

Particles can undergo a wide variety of interactions as they propagate through matter. For sim-

plicity, we consider only absorption and scattering here. However, more types of interactions

can be accomodated within the basic framework associated with absorption and scattering. The

purpose of this section is to de£ne certain basic functions that describe the transport properties of

materials through which the radiation propagates. A statistical viewpoint is taken with respect to

interactions, i.e., over a given pathlength, the number of interactions that a particle will undergo

is probabilistic rather than deterministic.

Name: Microscopic Interaction Cross-Section.

Symbol: σ̂(
−→
r , E).

Units: cm2.

Interpretation: This is the effective cross-sectional area of a target atom for a particular type

of interaction seen at position,
−→
r , by a transport particle with an energy about E.

Name: Macroscopic Interaction Cross-Section.

Symbol: σ(
−→
r , E).

Units: cm−1.

Equivalence: σ(
−→
r , E) = ρa(

−→
r )σ̂(

−→
r , E), where ρa is the atomic density (target −

atoms/cm3).
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Interpretation 1: The expression,

σ(
−→
r , E) ds ,

represents the expected number of interactions by a particle with energy, E, that starts at position,

−→
r , and travels a differential distance, ds.

Interpretation 2: Assuming a space-independent value of σ, the quantity,

1

σ
,

represents the average distance that a particle will travel between interactions. This distance is

called the mean-free-path.

Name: Differential Scattering Distribution Function.

Symbol: f(
−→
r , E ′ → E, µs).

Units: (steradian−MeV )−1.

Interpretation: Consider the scattering frame coordinate system illustrated in Fig. 4. Given

that a particle with initial energy, E′, has scattered at position,
−→
r , the expression,

f(
−→
r , E ′ → E, µs) dµs dφs dE ,

represents the probability that the particle will scatter into the differential solid angle, dΩs =

dµs dφs, with a £nal energy about E. Note that f is independent of the azimuthal scattering
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Figure 4: The scattering frame coordinate system. The zs-axis lies along the initial direction
of the scattering particle. The angle, θs, is called the polar scattering angle. The angle, φs, is

called the azimuthal scattering angle, and the vector,
−→
Ω s, represents the direction into which the

particle scatters. It is convenient to use the variable µs = cos θs in place of θs.

angle. Since f is a probability distribution function, it follows that

∫ ∞

0

2π

∫ π

0

f(
−→
r , E ′ → E, µs) dµs dE = 1 .

Name: The Macroscopic Differential Scattering Cross-Section.
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Symbol: σs(
−→
r , E ′ → E, µs).

Units: (cm− steradian−MeV )−1.

Equivalence: σs(
−→
r , E ′ → E, µs) = σs(

−→
r , E)f(

−→
r , E ′ → E, µs).

Interpretation: The expression,

σs(
−→
r , E ′ → E, µs) ds dµs dφs dE ,

represents the expected number of scattering events by a particle with initial energy, E′, that

starts at position,
−→
r , travels a differential distance, ds, and scatters into the differential solid

angle, dΩs = dµs dφs, with a £nal energy about, E.

Name: Differential Scattering Kernel.

Symbol: Ks(
−→
r , E ′ → E,

−→
Ω

′
→ −→

Ω ).

Units: (steradian−MeV )−1.

Equivalence: Ks(
−→
r , E ′ → E,

−→
Ω

′
→ −→

Ω ) = σs(
−→
r , E ′ → E,

−→
Ω

′
· −→Ω ).

Interpretation: The expression,

Ks(
−→
r , E ′ → E,

−→
Ω

′
→ −→

Ω ) ds dΩ dE ,

represents the expected number of scattering events by a particle with initial energy, E′, and

initial direction,
−→
Ω

′
, that starts at position,

−→
r , travels a differential distance, ds, and scatters

into a direction about
−→
Ω , with a £nal energy about, E.
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4 Reaction Rates and Sources

We use fundamental transport functions together with fundamental transport medium properties

to obtain particle reaction rates and certain solution-dependent sources.

Name: Total Interaction Rate.

Representation: ψ(
−→
P )σt(

−→
r , E).

Units: (p/(cm3 − sec− steradian−MeV )).

Interpretation: The expression,

ψ(
−→
P )σt(

−→
r , E) dP ,

represents the number of particles per second interacting (being absorbed or scattered) within the

differential volume dV with directions about
−→
Ω and energies about, E.

Name: Scattering Source.

Symbol: S(
−→
P ).

Representation:
∫ ∞

0

∫
4πKs(

−→
r , E ′ → E,

−→
Ω

′
→ −→

Ω )ψ(
−→
r ,

−→
Ω

′
, E ′) dΩ′ dE ′ .

Units: (p/(cm3 − sec− steradian−MeV )).

Interpretation: The expression,

S(
−→
P ) dP ,

represents the number of particles per second within the differential volume dV being scattered

into directions about
−→
Ω and energies about, E.
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Name: Inhomogeneous Source.

Symbol: Q(
−→
P ).

Units: (p/(cm3 − sec− steradian−MeV )).

Interpretation: The expression,

Q(
−→
P ) dP ,

represents the number of particles being created per second within the differential volume dV

with directions about
−→
Ω and energies about, E.
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